Skip header and navigation

62 records – page 1 of 4.

Document Type
Rapid Review
Review Code
EOC211126 RR
Question Submitted
November 26, 2021
Date Completed
November 30, 2021
Status
3. Completed
Research Team
EOC
Document Type
Rapid Review
Review Code
EOC211126 RR
Question Submitted
November 26, 2021
Date Completed
November 30, 2021
Status
3. Completed
Research Team
EOC
Key Findings
Most of the reference exposure studies observed the morbidity/mortality of individuals working in sterilization plants with direct, chronic exposure to high concentrations of ethylene oxide gas prior to changes in allowable environmental levels in 1985, and also formed the basis for the United States Environmental Protection Agency (EPA) and National Institute for Occupational Safety and Health (NIOSH) findings of cancer causation
Meta-analyses of more recent observational cohort studies performed in the 2000s and 2010s of sterilization workers directly exposed to ethylene oxide gas in the workplace do not support the association between ethylene oxide exposure and increased risk of lymphohematopoietic or breast cancers
The elimination half-life of ethylene oxide in humans is approximately 42 minutes – thus almost 90% of any ethylene oxide in a single exposure would be eliminated from the body in two hours
In order to gain FDA approval, testing swabs need to have demonstrated to meet tolerable contact limits of ethylene oxide residuals – experts claim that once packaged for a period of time and aerated prior to use, it is unlikely to contain any ethylene oxide residuals; corroborated by a study assessing the residuals on DNA swabs, finding no detectable levels of ethylene oxide on swabs 3 weeks after sterilization treatment
Category
Administration
Infection Prevention and Control
Population
All adults
Other
Healthcare workers
Priority Level
Level 1 2-3 days
Cite As
Badea, A; Groot, G; Hernandez-Ronquillo, L; Fox, L; Mueller, M. What are the risks associated with repeated exposure to Ethylene Oxide from ongoing use of the Abbott Panbio AG COVID-19 Nasal swabs? 2021 Nov 30. Document no.: EOC211126 RR. In: COVID-19 Rapid Evidence Reviews [Internet]. SK: SK COVID Evidence Support Team, c2021. 14 p. (CEST rapid review report).
Related Documents
Documents
Less detail
Document Type
Rapid Review
Review Code
INF031801v017 RR
Question Submitted
March 18, 2021
Date Completed
November 26, 2021
Status
5. Updated review
Research Team
Infectious Disease
Document Type
Rapid Review
Review Code
INF031801v017 RR
Question Submitted
March 18, 2021
Date Completed
November 26, 2021
Status
5. Updated review
Research Team
Infectious Disease
Updated Key Findings
November 16, 2021
Centers for Disease Control and Prevention (CDC) recommended that any individuals who develop myocarditis/pericarditis after a dose of an mRNA COVID-19 vaccine should defer receiving a subsequent dose until additional safety data are available.
On 9th November, 2021, the CDC allows mix and match of booster shots in USA.
National Advisory Committee on Immunization (NACI) recommended boosters for other high-risk groups, including people 70 years of age and older and front-line health care workers who had a short period of time between their first two shots.
NACI also recommended boosters for people who received two doses of the Astra Zeneca vaccine, as the mRNA vaccines appear to offer better protection.
On 4th November, 2021, the United Kingdom became the first country to approve Pfizer’s competitorOK competitor Merck's COVID-19 pill, which is already under review at the Food and Drug Administration (FDA) after showing strong initial results. Other antivirals are under consideration including an agent from Pfizer (Paxlovid). While promising, caution should be taken with interpreting data from oral antivirals as currently, no published data exist and much conclusions are drawn off grey literature .
India’s Covaxin covid 19 vaccine by Bharat Biotech reported a vaccine effectiveness of 77.8% from a clinical trial. , 2021, a CDC reported vaccine efficacy of 90.9% with primary data from one phase II/III clinical trial in preventing symptomatic, laboratory-confirmed COVID-19 in children aged 5–11 years with or without evidence of previous SARS-CoV-2 infection.
Key Findings
November 2, 2021
October 21st, 2021 Pfizer Inc. and BioNTech announced results from a Phase 3 randomized, controlled trial evaluating the efficacy and safety of a 30-µg booster dose of the Pfizer-BioNTech COVID-19 with a relative vaccine efficacy of 95.6%.
On 21st October, 2021, the advisory panel for the Centers for Disease Control and Prevention (CDC) said people who received Moderna and Johnson & Johnson (J&J) COVID-19 vaccines should receive a booster dose, and should continue with the original vaccine they recieved.
NACI’s latest guidelines suggest provinces should offer boosters to Canadians who received two doses of the Oxford-AstraZeneca vaccine or one dose of the Johnson & Johnson vaccine.
The US Food and Drug Administration (FDA) vaccine advisory group on 26th October 2021 approved the emergency use of the Pfizer-BioNTech COVID-19 vaccine for children ages 5 to 11 at a reduced dosage from the stanard dosing available for those over 12.
Therapeutic Goods Administration (Australia) has provisionally approved a third dose of the Pfizer (Comirnaty) vaccine for individuals 18 years or older. Pfizer (Comirnaty) is recommended as a single booster dose, irrespective of the primary COVID-19 vaccine used.
On 29th October, 2021, NACI issued new guidance "strongly" recommending booster shots for seniors 80 and older.
A survey at University of Oxford, UK, found that social media played a part in children aged 9 to 18 being more undecided than their older counterparts.
A report by the CDC found that the effectiveness of 2 doses of Pfizer-BioNTech vaccine against COVID-19 hospitalization was 93% during the period of B.1.617.2 (Delta) variant dominance among children and adolescents aged 12–18 years.
Category
Epidemiology
Infection Prevention and Control
Subject
Vaccines
Immunity
Clinical Presentation
Infection Prevention and Control
Population
All
Clinical Setting
Community
ICU
Medicine Unit
Primary care
Public Health
Priority Level
Level 3 Two weeks (14 days)
Cite As
Jagwani, M; Lee, S; Shumilak, G; Reeder, B; Groot, G; Hernandez, L; Howell-Spooner, B; Miller, L. How effective are COVID-19 vaccines? 2021 Nov 26. Document no.: INF031801v017 RR. In: COVID-19 Rapid Evidence Reviews [Internet]. SK: SK COVID Evidence Support Team, c2021. 96 p. (CEST rapid review report)
Review History
INF031801v16 RR: November 12, 2021
INF031801v15 RR: October 28, 2021
INF031801v014 RR: October 16, 2021
INF031801v013 RR: September 24, 2021
INF031801v012 RR: September 10, 2021
INF031801v010 RR: August 25, 2021
INF031801v9 RR: August 23, 2021
INF031801v8 RR: August 9, 2021
INF031801v7 RR: July 20, 2021
INF031801v6 RR: July 2, 2021
INF031801v5 RR: June 22, 2021
INF031801v4 RR: June 3, 2021
INF031801v3 RR: May 24, 2021
INF031801v2 RR: May 14, 2021
INF031801 RR: March 31, 2021
Related Documents
Documents
Less detail
Document Type
Rapid Review
Review Code
EOC031801v017 RR
Question Submitted
March 18, 2021
Date Completed
November 23, 2021
Status
5. Updated review
Research Team
EOC
Document Type
Rapid Review
Review Code
EOC031801v017 RR
Question Submitted
March 18, 2021
Date Completed
November 23, 2021
Status
5. Updated review
Research Team
EOC
Updated Key Findings
November 23, 2021 - Delta dominance - Delta continues to account for most of variants sequenced from surveillance data from Public Health Ontario, Public Health England and ECDC. - The Delta sub-lineage AY.4.2 (Delta plus) accounts for a slowly increasing proportion of Delta cases in the UK. However, evidence is still emerging on its effect on vaccine efficacy and disease severity. - Increased disease severity (hospitalization) has been observed in adults 18 to 49 years during Delta variant dominance and has been attributed to the low vaccination rates among this age group. - Epidemiological models predict a new wave of infection if measures such as NPIs are relaxed due to changes in immune escape capability and transmissibility of variants. - While of moderate certainty, evidence exists to suggest the Delta variant is associated with a higher secondary attack rate, especially among unvaccinated populations.
Key Findings
November 12, 2021 - Emerging data suggest the Delta variant can initiate fast-rising outbreaks in populations with immune responses to prior variants, resulting in reinfections and vaccination breakthroughs. However, we have low certainty of evidence at this point. - A quarter of Delta-associated outbreaks in Ontario were reported in elementary school settings for the week of September 12 to September 18, 2021. - Full vaccination against COVID-19 has been reported to be more effective in protecting against Delta infection and severe illness (hospitalization and ICU admissions) than partial vaccination. - Effective protection for essential workers and prompt surveillance of occupational health in the workplace are needed due to disproportionate Delta variant infection among workers such as cleaners. - While the certainty is low, evidence exists to suggest that a lower gross domestic product (GDP) per capita, higher diabetes prevalence, higher cardiovascular disease rate, and lower percentage of fully vaccinated people have been reported as predictors of higher Delta variant Case Fatality Rate (CFR)
Category
Epidemiology
Healthcare Services
Subject
Health Planning
Variants
Population
All
Clinical Setting
Community
Public Health
Priority Level
Level 3 Two weeks (14 days)
Cite As
Asamoah, G; Badea, A; Lee, S; Shumilak, G; Reeder, B; Groot, G; Muhajarine, N; Hernandez-Ronquillo L; Miller, L; Howell-Spooner, B. What is the epidemiology of variants and what are the implications for healthcare? 2021 Nov 23. Document no.: EOC031801v017 RR. In: COVID-19 Rapid Evidence Reviews [Internet]. SK: SK COVID Evidence Support Team, c2021. 48 p. (CEST rapid review report).
Review History
EOC031801v16 RR
EOC031801v15 RR
EOC031801v14 RR
v012 and v013 RR were combined into v013
EOC031801v011 RR: August 27, 2021
v010 and v011 RR were combined into v011
EOC031801v9 RR: August 19, 2021
EOC031801v8 RR: July 12, 2021
EOC031801v7 RR; June 24, 2021
EOC031801v6 RR; June 17, 2021
EOC031801v5 RR; June 2, 2021
EOC031801v4 RR; May 17, 2021
EOC031801v3 RR: May 3, 2021
EOC031801v2 RR: April 20, 2021
EOC031801 RR: March 25, 2021
Related Documents
Documents
Less detail
Document Type
Rapid Review
Review Code
EOC021901v2 RR
Question Submitted
February 19, 2021
Date Completed
October 29, 2021
Status
5. Updated review
Research Team
EOC
Document Type
Rapid Review
Review Code
EOC021901v2 RR
Question Submitted
February 19, 2021
Date Completed
October 29, 2021
Status
5. Updated review
Research Team
EOC
Updated Key Findings
October 29, 2021
In October, WHO released a consensus definition of post COVID-19 condition that includes 12 domains. This development should lead to better standardization of reporting and contribute to more precise prevalence estimates and better understanding of associated risk factors.
The effects of Variants of Concern (VoC) and COVID vaccination on progression of Long COVID symptoms remains unclear.
Risk factors for developing Long COVID symptoms were similar but limited evidence suggests that pre-pandemic psychological distress and poor general health were associated with developing persistent symptoms. Evidence is too limited to determine whether vaccination reduces the risk of developing Long COVID among persons with breakthrough infections.
Given the protean manifestations of Long COVID symptoms, the underlying causes are likely multifactorial; however, strong evidence to substantiate the theories of causation remains limited.
Research related to longer-term consequences of SARS CoV-2 infections in pediatric populations is growing but remains limited.
Key Findings
March 15, 2021
There is a lack of consensus around the clinical definition of Long COVID which in turn causes challenges with understanding the incidence and prevalence as well as the potential impact for the health care system
Information about the natural history of Long COVID is incomplete but limited evidence suggests that the immune response trajectories differ for those with few or no symptoms compared to those with severe disease. Individuals with severe disease are more likely to exhibit immunological marker abnormalities but anyone can experience functional limitations.
The mechanisms underlying the development of persistent symptoms in Long COVID remain an enigma. Despite multiple theories, there is little empirical evidence for specific immunological and or biochemical abnormalities in samples of individuals with symptoms consistent with Long COVID.
Risk factors for Long COVID include female gender, older age, higher body mass index, pre-existing asthma and the number of symptoms.
Few studies explored the short-term impact of Long COVID on health care utilization patterns and found a higher impact for those with severe disease compared with mild disease.
Category
Healthcare Services
Clinical Presentation
Subject
Long Covid
Clinical Presentation
Health Planning
Symptoms
Population
All
Clinical Setting
Ambulatory
Long Term Care
Primary care
Priority Level
Level 5 Four weeks+ (28 days+)
Cite As
Williams-Roberts, H; Groot, G; Mueller, M; Dalidowicz, M. Long COVID: What does it mean for the healthcare system and programs? 2021 Oct 29. Document no.: EOC021901v2 RR. In: COVID-19 Rapid Evidence Reviews [Internet]. SK: SK COVID Evidence Support Team, c2021. 14 p. (CEST rapid review report).
Related Documents
Documents
Less detail
Document Type
Rapid Review
Review Code
EOC210903 RR
Question Submitted
September 29, 2021
Date Completed
October 18, 2021
Status
3. Completed
Research Team
EOC
Document Type
Rapid Review
Review Code
EOC210903 RR
Question Submitted
September 29, 2021
Date Completed
October 18, 2021
Status
3. Completed
Research Team
EOC
Key Findings
Consequences of delayed surgeries have potential patient-level and system-level consequences
Modelling indicates that even complete resumption of services requires additional resources to clear the backlogs caused by service disruptions
Retrospective data analysis indicates that minor delays for most cancer surgeries does not negatively impact patients, however the length of time to safely delay is largely dependent on condition and urgency
Category
Administration
Healthcare Services
Subject
Health Planning
Decision Making
Risk
Surgical Procedures
Population
All
Clinical Setting
Other
Perioperative units
Priority Level
Level 2 One week (7 days)
Cite As
Badea, A; Groot, G; Young, C; Mueller, M. What have been the consequences of delayed surgeries due to the COVID-19 pandemic? 2021 Oct 18. Document no.: EOC210903 RR. In: COVID-19 Rapid Evidence Reviews [Internet]. SK: SK COVID Evidence Support Team, c2021. 14 p. (CEST rapid review report).
Related Documents
Documents
Less detail
Document Type
Rapid Review
Review Code
EOC210902 RR
Question Submitted
September 22, 2021
Date Completed
October 7, 2021
Status
3. Completed
Research Team
EOC
Document Type
Rapid Review
Review Code
EOC210902 RR
Question Submitted
September 22, 2021
Date Completed
October 7, 2021
Status
3. Completed
Research Team
EOC
Key Findings
Emerging evidence suggesting waning levels of immune markers with time, particularly against more virulent variants. How this will correlate to functional immunity is yet to be documented.
Immunocompromised populations with lower levels of responses to standard 2-dose regimens may benefit from a 3rd dose of mRNA vaccine as a part of the primary series, though their response may still be lower than what is expected in the general population
Current recommendation for populations to receive a 3rd dose include adults over a certain age (depending on jurisdiction), those living in long-term care settings, frontline health and social workers and/or people working in high risk settings, those with immune compromising conditions leading to increased risk of severe disease/poor outcomes if infected
Safety trials have indicated that side effects to 3rd/booster doses are similar to those following the 2nd dose in initial vaccination series
Category
Clinical Management
Infection Prevention and Control
Subject
Decision Making
Health Planning
Infection Prevention and Control
Vaccination
Population
All
Clinical Setting
Community
Public Health
Priority Level
Level 3 Two weeks (14 days)
Cite As
Badea, A; Groot, G; Muhajarine, N; Lee, S; Shumilak, G; Hernandez-Ronquillo, L; Tian, K. What is the current evidence and recommendations regarding COVID-19 vaccine booster shots (exceeding 2 doses) for the general population? 2021 Oct 07, Document no.: EOC210902 RR. In: COVID-19 Rapid Evidence Reviews [Internet]. SK: SK COVID Evidence Support Team, c2021. 8 p. (CEST rapid review report).
Related Documents
Documents
Less detail
Document Type
Rapid Review
Review Code
EOC210501v2 RR
Question Submitted
May 17, 2021
Date Completed
August 24, 2021
Status
5. Updated review
Research Team
EOC
Document Type
Rapid Review
Review Code
EOC210501v2 RR
Question Submitted
May 17, 2021
Date Completed
August 24, 2021
Status
5. Updated review
Research Team
EOC
Updated Key Findings
August 18, 2021 - Proof of vaccine “freebies” to customers are slowing - Many vaccine “lotteries” have now ended with prizes being given out, retrospective analysis of vaccine numbers and assumptions regarding causality will likely follow in the near future - More state-sponsored incentives such as partnerships with ride-share companies, childcare centers, etc. - Post-secondary institutions offering incentives mostly in the form of raffles with grand prizes of cash/scholarships for staff/students with proof of vaccination - ESN evidence synthesis found 8 systematic reviews providing some evidence of positive impact of financial incentives with or without other interventions for non-COVID-19 vaccines, 3 reviews found no effect - Several European countries (Greece, France, Italy) mandating vaccination for healthcare workers with refusers facing sanctions/fines/suspensions/job loss - Ontario requiring hospitals, licensed care homes and other high-risk settings such as post-secondary institutions, women’s shelters, youth care facilities, etc. to establish vaccination policies – while vaccination will not likely be mandatory, those who are not vaccinated will be subject to frequent antigen testing. - In Pakistan, the government will be blocking the SIM cards of vaccine refusers, and allowing business to resume in areas with a vaccination rate of greater than 20% - In Indonesia, vaccine refusers will have any social aid suspended and face fines - In the Philippines, the President is threatening to find ways to legalize arresting and forcing vaccination for refusers - A retrospective analysis of vaccination data in Israel found a peak of 2nd dose vaccinations correlating with the exemption of quarantine for vaccinated individuals beginning January 17th, and high rates continued following the day with the highest new daily cases as well as the day of highest fatality rates - Israeli survey of 500 individuals found that 21% of respondents were not intending to vaccinate. The implementation of the ‘Green Pass’ would possibly or definitely convince 31% of respondents, but 46% of respondents indicated that it would not.
Key Findings
May 27, 2021
Vaccine incentives are beginning to emerge in North America in various forms due to a lagging vaccine uptake combined with the threat of SARS-CoV-2 variants
Vaccine incentives range from free items and discounts offered by businesses to customers to financial incentives offered by companies to employees such as paid time off or cash bonuses
Some states/provinces have developed vaccine incentive programs offering large lotteries with cash prizes or scholarship awards, cash incentives or offers for free/discounted entertainment options
Some incentives are specifically geared to high priority populations, for example offering gift cards to anyone within a certain age demographic that receives a vaccine at certain sites, or offering the single-dose Johnson & Johnson vaccine at walk-up vaccination sites in subway stations with the addition of free transit passes
Category
Administration
Subject
Decision Making
Vaccines
Population
All
Priority Level
Level 1 2-3 days
Cite As
Badea, A; Reeder, B; Groot, G; Ellsworth, C. What are other jurisdictions offering for incentive-based COVID-19? 2021 Aug 24, Document no.: EOC210501v2 RR. In: COVID-19 Rapid Evidence Reviews [Internet]. SK: SK COVID Evidence Support Team, c2021. 10 p. (CEST rapid review report).
Related Documents
Documents
Less detail
Document Type
Rapid Review
Review Code
EPM210602 RR
Question Submitted
June 22, 2021
Date Completed
July 12, 2021
Status
3. Completed
Research Team
Epidemiology & Modelling
Document Type
Rapid Review
Review Code
EPM210602 RR
Question Submitted
June 22, 2021
Date Completed
July 12, 2021
Status
3. Completed
Research Team
Epidemiology & Modelling
Key Findings
Long COVID-19 is likely to increase healthcare demands across the health system, including emergency departments, hospital admissions, primary care visits, specialists appointments, and home care and rehabilitation services.
The clinical care burden of long COVID-19 is the greatest in the first 3 months after testing and is likely to place the greatest demand on primary care services.
Patients with severe COVID-19 illness are more likely to place longer-term demands (4-6 months) on specialist care due to respiratory, circulatory, endocrine, metabolic, psychiatric and unspecified conditions.
Category
Clinical Presentation
Epidemiology
Subject
Long Covid
Health Planning
Clinical Presentation
Population
All
Clinical Setting
Ambulatory
Community
Emergency
ICU
Long Term Care
Medicine Unit
Primary care
Public Health
Priority Level
Level 1 2-3 days
Cite As
McLean, M; Williams-Roberts, H; Reeder, B; Howell-Spooner, B; Ellsworth, C. What are long COVID's demands on the healthcare system, and its severity of the illness? 2021 Jul 12, Document no.: EPM210602 RR. In: COVID-19 Rapid Evidence Reviews [Internet]. SK: SK COVID Evidence Support Team, c2021. 23 p. (CEST rapid review report).
Related Documents
Documents
Less detail
Document Type
Rapid Review
Review Code
EPM210601 RR
Question Submitted
June 22, 2021
Date Completed
July 9, 2021
Status
3. Completed
Research Team
Epidemiology & Modelling
Document Type
Rapid Review
Review Code
EPM210601 RR
Question Submitted
June 22, 2021
Date Completed
July 9, 2021
Status
3. Completed
Research Team
Epidemiology & Modelling
Key Findings
The frequency of Long COVID symptoms varies widely across studies based on populations studied, duration of follow up and methods of assessment of symptoms.
It is estimated that 1 in 50 persons experience Long COVID symptoms after 12 weeks; however, higher estimates up to 80% have been reported in studies with a greater proportion of persons who were previously hospitalized. A recent study of a mixed cohort of 96 persons found that only 22.9% had no symptoms at 12 months post diagnosis.
A wide range of symptoms affecting multiple organ systems has been reported. For many persons symptoms improve over time while others experience persistent and/or new symptoms. Among studies with the longest duration of follow up, the most frequently reported symptoms included fatigue (up to 65%), dyspnea (up to 50%), headache (up to 45%), anosmia/ageusia (up to 25%), cognitive memory/concentration (up to 39.6%) and sleep disorders (up to 26%).
Few studies estimated the duration of symptoms with estimates ranging from 2.2% for 6 months and 27% for 7-9 months.
The mechanism(s) leading to Long COVID remain unclear but those experiencing post acute sequelae tend to be older, have a greater number of symptoms during the acute phase of illness or manifest specific symptoms and live with multiple comorbid conditions such as obesity.
The lack of consensus on a definition of Long COVID contributes to marked variations in robust prevalence estimates.
Category
Clinical Presentation
Epidemiology
Subject
Long Covid
Symptoms
Clinical Presentation
Population
All
Clinical Setting
Ambulatory
Community
ICU
Long Term Care
Medicine Unit
Primary care
Public Health
Priority Level
Level 1 2-3 days
Cite As
Williams-Roberts, H; Groot, G; Reeder, B; Howell-Spooner, B; Ellsworth, C. What is the incidence and duration of Long COVID cases? 2021 Jul 09, Document no.: EPM210601 RR. In: COVID-19 Rapid Evidence Reviews [Internet]. SK: SK COVID Evidence Support Team, c2021. 19 p. (CEST rapid review report).
Related Documents
Documents
Less detail
Document Type
Rapid Review
Review Code
EOC210503 RR
Question Submitted
May 28, 2021
Date Completed
June 21, 2021
Status
3. Completed
Research Team
EOC
Document Type
Rapid Review
Review Code
EOC210503 RR
Question Submitted
May 28, 2021
Date Completed
June 21, 2021
Status
3. Completed
Research Team
EOC
Key Findings
Requiring proof of vaccination for entry into another country is not a new idea. There are regulations that need to be followed to set up a “vaccine passport” in relation to international travel (International Health Regulations (IHR) (2005))
At present the World Health Organization does not recommend vaccine passports for international travel, but they are working on a standard Smart Vaccination Certificate technical specification and standards to allow for harmonised processes to include COVID-19 vaccines into an updated version of the IHR (2005)
Countries around the world are beginning to put vaccine passports into place for international travel, as well as in some countries within country travel and access to services or businesses including Israel, France, Italy, Denmark, and the EU
The Canadian Federal government is supportive of a vaccine passport for international travel but recognize the issuing of vaccine passports will need to be province led
As of May 13, 2021, the province of Quebec has begun issuing a downloadable QR code that individual can keep on their smart phone.
As of June 9, 2021, the Federal government of Canada discussed easing restrictions for fully vaccinated Canadian citizens returning to the country
Ethical considerations in the use of vaccine passports include equitable access to vaccination (domestically and internationally), access to technology (eg. Smartphone passports), marginalization, or stigmatization especially among historically racialized groups, and socially isolated populations
Legal considerations include o Clarifying who has the legal authority to require proof of vaccination, o Ensuring that if new legislation is created and implemented it is in line with all pre-existing legislation (Charter of Rights and Freedoms, Human Rights Codes, privacy legislation, employment legislation), o Ensuring that, if created by the government, there is coordination of the Provincial and Federal governments for international travel with respect to jurisdictional overlap, security of information, fraud
Health care facilities should be able to legally enact vaccination policies for patient-facing employees so long as they allow for exemptions due to medical inability or bona fide religious, or conscientious beliefs
Six in ten Canadians (61%) expect vaccine passports to be widely used in Canada by the end of 2021, the same proportion (61%) of Canadians also agreed that only vaccinated people should be allowed to engage in events involving larger crowds such as public transit, air travel, or attending cultural and sports events
Category
Administration
Subject
Ethics
Decision Making
Vaccination
Population
All
Clinical Setting
Community
Public Health
Priority Level
Level 2 One week (7 days)
Cite As
Lashta E, von Tigerstrom B, Reeder B, Groot G; Miller, L; Mueller, M. What are the ethical/legal aspects of vaccine requirements? 2021 Jun 21, Document no.: EOC210503 RR. In: COVID-19 Rapid Evidence Reviews [Internet]. SK: SK COVID Evidence Support Team, c2021. 25 p. (CEST rapid review report).
Related Documents
Documents
Less detail
Document Type
Rapid Review
Review Code
EOC210502 RR
Question Submitted
May 27, 2021
Date Completed
June 10, 2021
Status
3. Completed
Research Team
EOC
Document Type
Rapid Review
Review Code
EOC210502 RR
Question Submitted
May 27, 2021
Date Completed
June 10, 2021
Status
3. Completed
Research Team
EOC
Key Findings
Only agreed upon contraindications against COVID-19 vaccination is for individuals with a history of allergic reactions to a component of the vaccine or an allergic reaction to a previous dose
Where allergies to components exist, vaccination with an alternative COVID-19 vaccine should be considered
Autoimmune conditions and treatments are not considered contraindications, however timing of vaccines in relation to treatment regimens should be considered
Category
Administration
Subject
Vaccination
Decision Making
Risk
Population
All
Priority Level
Level 2 One week (7 days)
Cite As
Badea, A; Groot, G; Reeder, B; Young, C; Ellsworth, C. What are legitimate exemptions/contraindications for COVID-19 vaccines from a medical point of view? 2021 Jun 10, Document no.: EOC210502 RR. In: COVID-19 Rapid Evidence Reviews [Internet]. SK: SK COVID Evidence Support Team, c2021. 8 p. (CEST rapid review report).
Related Documents
Documents
Less detail
Document Type
Rapid Review
Review Code
EOC210302 RR
Question Submitted
March 30, 2021
Date Completed
April 21, 2021
Status
3. Completed
Research Team
EOC
Document Type
Rapid Review
Review Code
EOC210302 RR
Question Submitted
March 30, 2021
Date Completed
April 21, 2021
Status
3. Completed
Research Team
EOC
Key Findings
The group designated in Saskatchewan as Clinically Extremely Vulnerable (CEV) is a heterogenous clinical population with factors that impair their immune response to differing degrees.
Very Limited evidence is currently available to assess the immune response following vaccination is selected clinical populations; no evidence is available to assess vaccine efficacy or effectiveness in these populations. The clinical relevance of measured immune response with respect to protection from disease is still uncertain.
In considering the immune response of the CEV population, it is recommended that the absolute difference in immune response between 1 and 2 doses be considered, as it is possible some patient groups will have lowered protection regardless of vaccine strategy.
In terms of clinical subgroups: oOrgan transplantation recipients on immunosuppressive medication: solid organ transplant recipients receiving anti-metabolite maintenance immunosuppression therapy were less likely to develop an antibody response to an mRNA vaccine, compared to those receiving other types of therapies (37% vs 63%). In a study of 242 kidney transplant recipients on immunosuppressive therapy only 10.8% became seropositive at 28 days after a single dose of mRNA vaccine. oCancer: A study of 151 elderly patients with solid and hematological malignancies and 54 healthy controls who received one or two doses of BNT162b2 (Pfizer-BioNTech) vaccine shows approximately 39% of solid cancer patients, 13% of hematological cancer patients, and 97% of healthy controls (p<0.0001) developed anti-S IgG 21 days following a single dose vaccine. However, response in solid cancer patients increased to 95% within 2 weeks of the second dose at 21 days. oOther immunocompromising conditions (e.g., auto-immune disorders and therapy): some level of immunity is generated with vaccination; however, what this means clinically is unknown. It seems that ensuring the dosing is properly timed around biologic therapy is important.
Category
Clinical Management
Healthcare Services
Subject
Vaccines
Vaccination
Risk
Comorbidities
Population
All
Other
vulnerable populations (clinically)
Clinical Setting
Cardiac unit
Community
Dialysis unit
ICU
Long Term Care
Medicine Unit
NICU
Oncology
Primary care
Public Health
Priority Level
Level 3 Two weeks (14 days)
Cite As
Azizian, A; Lee, S; Shumilak, G; Groot, G; Reeder, B; Miller, L; Howell-Spooner, B. What are the risks or benefits of extended intervals between doses of COVID-19 vaccines compared to recommended dosing in extremely vulnerable populations? 2021 Apr 20, Document no.: EOC210302 RR. In: COVID-19 Rapid Evidence Reviews [Internet]. SK: SK COVID Evidence Support Team, c2021. 15 p. (CEST rapid review report).
Similar Reviews
INF031801 RR
Related Documents
Documents
Less detail
Document Type
Rapid Review
Review Code
CC210301 RR
Question Submitted
March 30, 2021
Date Completed
April 6, 2021
Status
3. Completed
Research Team
Critical Care
Document Type
Rapid Review
Review Code
CC210301 RR
Question Submitted
March 30, 2021
Date Completed
April 6, 2021
Status
3. Completed
Research Team
Critical Care
Key Findings
· Tele-ICU services are provided either by existing staff within the network to smaller centers, or outsourced to larger networks or independent firms · The impact of tele-ICU adoption can result in a decrease in ICU mortality as large as 32% · The impact of tele-ICU adoption of length of stay is mixed, with some studies reporting a significant decrease, while others report a small, but statistically insignificant decrease · The degree of impact of tele-ICU adoption is linked to several factors such as yearly admission rates, location (urban vs. rural) and level of authority given to the tele-ICU team leading to increased positive impacts.
Category
Administration
Clinical Management
Subject
Critical Care
Decision Making
Facilities
Treatment
Population
All
Clinical Setting
ICU
Priority Level
Level 1 2-3 days
Cite As
Badea, A; Groot, G; Reeder, B; Young, C; Ellsworth, C; Howell-Spooner, B. How to deliver remote ICU care for COVID-19 patients to avoid/prevent transfer from smaller communities to tertiary care hospitals. 2021 Apr 6; Document no.: CC210301 RR. In: COVID-19 Rapid Evidence Reviews [Internet]. SK: SK COVID Evidence Support Team, c2020. 13p. (CEST rapid review report)
Related Documents
Documents
Less detail
Document Type
Rapid Review
Review Code
EOC031001 RR
Question Submitted
March 10, 2021
Date Completed
March 18, 2021
Status
3. Completed
Research Team
EOC
Document Type
Rapid Review
Review Code
EOC031001 RR
Question Submitted
March 10, 2021
Date Completed
March 18, 2021
Status
3. Completed
Research Team
EOC
Key Findings
Current recommendations suggest phased distribution of authorized vaccines and prioritization of the recipients (e.g., health care workers, frontline essential workers, and elderly population).
A concern that could exist with using AstraZeneca on critical populations is that it may have little coverage for mild-moderate B.1.351, which may have implications in transmission. This could be a concern in critical workforces if the variant becomes predominant, especially given the potentially higher transmissibility of variant. The literature is mixed but it is possible that AstraZeneca has lower efficacy than the mRNA vaccines.
Canadian National Advisory Committee on Immunization (NACI) recommends that in the context of limited vaccine supply, initial doses of mRNA vaccines should be prioritized for those at highest risk of severe illness and death and highest risk of exposure to COVID-19. On the other hand, US Advisory Committee on Immunization Practices (ACIP) recommends no product preference for the vaccines.
Just recently, NACI has expanded its recommendation for the use of the AstraZeneca vaccine to all people over the age of 18, now including those 65 years of age and over.
While Pfizer and Moderna vaccines are mRNA vaccines and need special logistical and transportation considerations, AstraZeneca and Johnson&Johnson (J&J) vaccines are viral vector vaccines that are easier to transport.
J&J is a single dose vaccine thus may be more appropriate in certain settings (such as homeless shelters and correctional facilities). Of note, there is no empirical evidence yet available to support this use; this suggestion is based simply on the nature of the vaccine.
Category
Administration
Infection Prevention and Control
Subject
Vaccines
Vaccination
Decision Making
Population
All
Clinical Setting
Community
Public Health
Priority Level
Level 2 One week (7 days)
Cite As
Azizian, A; Shumilak, G; Lee, S; Reeder, B; Groot, G; Miller, L; Howell-Spooner, B. What are the differences between COVID-19 vaccines and how they should be distributed based on population group(s)? 2021 Mar 18; Document no.: EOC031001 RR. In: COVID-19 Rapid Evidence Reviews [Internet]. SK: SK COVID Evidence Support Team, c2020. 19 p. (CEST rapid review report)
Related Documents
Documents
Less detail
Document Type
Rapid Review
Review Code
PH030401 RR
Question Submitted
March 4, 2021
Date Completed
March 12, 2021
Status
3. Completed
Research Team
Public Health
Document Type
Rapid Review
Review Code
PH030401 RR
Question Submitted
March 4, 2021
Date Completed
March 12, 2021
Status
3. Completed
Research Team
Public Health
Key Findings
Vulnerable populations such as those experiencing homelessness are 20 times more likely to be hospitalised due to COVID-19, 10 times more likely to require intensive care for COVID-19 and 5 times more likely to die within 21 days of a positive test for COVID-19
Many organizations advocate for socially vulnerable populations to be considered priority populations due to their oftencomplex health needs and inability to fully execute best practices for infection prevention and control
Past experiences from Hepatitis vaccination (requiring 3 injections) and H1N1 pandemic influenza vaccination indicate that partnering with community organizations to provide vaccinations in shelters, community centers and other frequently accessed places along with education and access to known, trusted healthcare providers greatly increase the uptake of vaccination among socially vulnerable populations
Beyond sheltered populations experiencing homelessness, considerations for equitable vaccination programs for the general population should include plans for accessibility for all, including underserved geographic regions
Category
Healthcare Services
Infection Prevention and Control
Subject
Health Planning
Vulnerable Populations
Vaccination
Population
All
Neonates
Infants
All Pediatrics
All adults
Aged (80+)
Homeless
Mental Health patients
Indigenous Peoples
Other
vulnerable populations
Clinical Setting
Community
Public Health
Priority Level
Level 2 One week (7 days)
Cite As
Badea, A; Reeder, B; Hanson, L; Miller, L; Howell-Spooner, B. What are the vaccination strategies for vulnerable populations? 2021 Mar 12; Document no.: PH030401 RR. In: COVID-19 Rapid Evidence Reviews [Internet]. SK: SK COVID Evidence Support Team, c2020. 33 p. (CEST rapid review report)
Related Documents
Documents
Less detail
Document Type
Rapid Review
Review Code
CC011101 RR
Question Submitted
January 8, 2021
Date Completed
February 27, 2021
Status
3. Completed
Research Team
Critical Care
Document Type
Rapid Review
Review Code
CC011101 RR
Question Submitted
January 8, 2021
Date Completed
February 27, 2021
Status
3. Completed
Research Team
Critical Care
Key Findings
There is limited research examining COVID-19 ICU patients undergoing prolonged (>14 days) mechanical ventilation
Rates of prolonged mechanical ventilation, defined as > 14 days, among COVID-19 ICU patients ranged from 16.7% to 33.3%.
Overall, studies suggest that length of ICU stay range from 11 to 31 days and length of hospital stay range from 25 to 51 days among COVID-19 patients who have undergone prolonged mechanical ventilation.
Following ICU discharge, patients are admitted to general wards, subacute nursing facilities, pneumological sub-intensive units, rehabilitation wards or long-term acute care.
Category
Clinical Management
Clinical Presentation
Subject
Ventilation
Critical Care
Outcome Assessment
Population
All
Clinical Setting
ICU
Priority Level
Level 4 Three weeks (21 days)
Cite As
Groot, G; McLean, M; Fox, L; Mueller, M. What is the final disposition of post-COVID patients who require chronic ventilation in the ICU? 2021 Feb 27; Document no.: CC011101 RR. In: COVID-19 Rapid Evidence Reviews [Internet]. SK: SK COVID Evidence Support Team, c2020. 37 p. (CEST rapid review report)
Related Documents
Documents
Less detail
Document Type
Rapid Review
Review Code
EOC062201v2 RR
Question Submitted
June 22, 2020
Date Completed
January 22, 2021
Status
5. Updated review
Research Team
EOC
Document Type
Rapid Review
Review Code
EOC062201v2 RR
Question Submitted
June 22, 2020
Date Completed
January 22, 2021
Status
5. Updated review
Research Team
EOC
Updated Key Findings
Generally speaking, data indicate that adult cancer patients and those who have recently received or are receiving anti-cancer therapy are at a higher risk of severe outcomes and death resulting from COVID-19 compared to those without cancer. However, more data are beginning to elucidate the nuances of these risks depending on patient specific factors.
Limited data indicate that pediatric cancer patients are not at a high level of risk of severe outcomes from COVID-19.
Limited evidence indicates some differences in the course and severity of SARS-CoV-2 infection depending on the type of immunosuppressive therapy a patient receives.
Key Findings
Generally speaking, data indicate that adult cancer patients and those who have recently received or are receiving anti-cancer therapy are at a higher risk of severe outcomes and death resulting from COVID-19 compared to those without cancer.
Pediatric cancer populations may not be at the same level of risk as adult populations.
There is not enough evidence at this time to determine if there are differences in the course of SARS-CoV-2 infection in patients receiving chemotherapy vs. those who are not aside from outcomes and severity.
Category
Clinical Presentation
Subject
Chemotherapy
Cancer
Comorbidities
Natural History
Population
All
Priority Level
Level 3 completed within 2-3 days
Cite As
Vanstone, J; Groot, G; Miller, L; Mueller, M. What are the differences in the clinical course of COVID-19 between patients undergoing chemotherapy and otherwise healthy individuals? 2021 Jan 22; Document no.: EOC062201v2 RR. In: COVID-19 Rapid Evidence Reviews [Internet]. SK: SK COVID Evidence Support Team, c2020. 5 p. (CEST rapid review report)
Review History
EOC062201 RR: June 29, 2020
Related Documents
Documents
Less detail
Document Type
Rapid Review
Review Code
PH011401 RR
Question Submitted
January 14, 2021
Date Completed
January 19, 2021
Status
3. Completed
Research Team
Public Health
Document Type
Rapid Review
Review Code
PH011401 RR
Question Submitted
January 14, 2021
Date Completed
January 19, 2021
Status
3. Completed
Research Team
Public Health
Key Findings
· Recommended to use existing vaccination structures and delivery services as much as possible for distribution of the COVID-19 vaccines · Important to consider cold-chain requirements when developing distribution plans · Should consider alternate locations for hard-to-reach populations that are easily accessible and familiar · Consider branching out to mobile vaccination (e.g. home visits, door-to-door), pharmacies, workplaces, congregate living facilities, walk-up/drive-through mechanisms for vaccine delivery
Category
Administration
Infection Prevention and Control
Subject
Vaccines
Decision Making
Health Planning
Population
All
Clinical Setting
Primary care
Public Health
Priority Level
Level 1 2-3 days
Cite As
Badea, A; Groot, G; Mueller, M; Howell-Spooner, B. How are other jurisdictions distributing COVID-19 vaccines in non-healthcare worker environments and what is the rationale for those distribution models? 2021 Jan 19; Document no.: PH011401 RR. In: COVID-19 Rapid Evidence Reviews [Internet]. SK: SK COVID Evidence Support Team, c2020. 17 p. (CEST rapid review report)
Related Documents
Documents
Less detail
Document Type
Rapid Review
Review Code
EOC011102 RR
Question Submitted
January 11, 2021
Date Completed
January 15, 2021
Status
3. Completed
Research Team
EOC
Document Type
Rapid Review
Review Code
EOC011102 RR
Question Submitted
January 11, 2021
Date Completed
January 15, 2021
Status
3. Completed
Research Team
EOC
Key Findings
Two congregate living situations were identified in the literature: those in correctional facilities and those with mental health issues.
People in correctional facilities are more susceptible to infection and have higher mortality rates due to COVID-19 than the general population. Managing outbreaks in facilities is difficult due to high levels of movement, the inability to physically distance, and limited personal protective equipment.
People with mental illness have higher risk of morbidity and mortality due to COVID-19. Severe mental illness is positively correlated with other environmental risk factors for contracting COVID-19, including living in crowded settings, homelessness, and institutionalization. Furthermore, those with mental illness find it difficult to adhere to changing public health or government guidelines around reducing the spread of COVID-19.
Category
Infection Prevention and Control
Subject
Communal Living
Vaccination
Population
All adults
Aged (80+)
Homeless
Other
Jails and prisons
Priority Level
Level 2 One week (7 days)
Cite As
Fick, F; Groot, G; Young, C; Mueller, M. What evidence is available to inform vaccination planning in congregate living? 2021 Jan 15; Document no.: EOC011102 RR. In: COVID-19 Rapid Evidence Reviews [Internet]. SK: SK COVID Evidence Support Team, c2020. 23 p. (CEST rapid review report)
Related Documents
Documents
Less detail
Document Type
Rapid Review
Review Code
EOC011101 RR
Question Submitted
January 11, 2021
Date Completed
January 13, 2021
Status
3. Completed
Research Team
EOC
Document Type
Rapid Review
Review Code
EOC011101 RR
Question Submitted
January 11, 2021
Date Completed
January 13, 2021
Status
3. Completed
Research Team
EOC
Key Findings
Overall, data are insufficient to recommend for or against the use of ECMO in patients with COVID-19 and refractory hypoxemia.
The best available evidence points to an overall combined mortality rate of 46% among COVID-19 patients placed on ECMO (n=331). This rate is similar to the overall 40% mortality rate for extracorporeal life support in pulmonary failure. However, mortality rates among COVID-19 patients on ECMO range widely due to patient factors, site specific factors, and small sample sizes in available studies.
Recommendations for strategies and patient indications/contraindications are available to help guide centres intending to offer ECMO to COVID-19 patients.
Category
Clinical Management
Healthcare Services
Subject
Critical Care
Treatment
Population
All
Clinical Setting
ICU
Priority Level
Level 2 One week (7 days)
Cite As
Vanstone, J; Groot, G; Dalidowicz, M; Young, C. What are the outcomes of ECMO and COVID, particularly in small centers? 2021 Jan 13; Document no.: EOC011101 RR. In: COVID-19 Rapid Evidence Reviews [Internet]. SK: SK COVID Evidence Support Team, c2020. 7 p. (CEST rapid review report)
Related Documents
Documents
Less detail

62 records – page 1 of 4.